skip to main content


Search for: All records

Creators/Authors contains: "Behnke, Megan I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), δ 13 C, and Δ 14 C signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Δ 14 C age is enhanced by splitting soil sources into shallow and deep pools (mean ± SD: −228 ± 211 vs. −492 ± 173‰) rather than traditional active layer and permafrost pools (−300 ± 236 vs. −441 ± 215‰) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO 2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (~7%) increase in aquatic biomass POM flux with warming would be equivalent to a ~30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system. 
    more » « less
  2. Abstract

    Biospheric particulate organic carbon (POCbio) burial and rock petrogenic particulate organic carbon (POCpetro) oxidation are opposing long‐term controls on the global carbon cycle, sequestering and releasing carbon, respectively. Here, we examine how watershed glacierization impacts the POC source by assessing the concentration and isotopic composition (δ13C and Δ14C) of POC exported from four watersheds with 0%–49% glacier coverage across a melt season in Southeast Alaska. We used two mixing models (age‐weight percent and dual carbon isotope) to calculate concentrations of POCbioand POCpetrowithin the bulk POC pool. The fraction POCpetrocontribution was highest in the heavily glacierized watershed (age‐weight percent: 0.39 ± 0.05; dual isotope: 0.42 (0.37–0.47)), demonstrating a glacial source of POCpetroto fjords. POCpetrowas mobilized via glacier melt and subglacial flow, while POCbiowas largely flushed from the non‐glacierized landscape by rain. Flow normalized POCbioconcentrations exceeded POCpetroconcentrations for all streams, but surprisingly were highest in the heavily glacierized watershed (mean: 0.70 mgL−1; range 0.16–1.41 mgL−1), suggesting that glacier rivers can contribute substantial POCbioto coastal waters. Further, the most heavily glacierized watershed had the highest sediment concentration (207 mgL−1; 7–708 mgL−1), and thus may facilitate long‐term POCbioprotection via sediment burial in glacier‐dominated fjords. Our results suggest that continuing glacial retreat will decrease POC concentrations and increase POCbio:POCpetroexported from currently glacierized watersheds. Glacier retreat may thus decrease carbon storage in marine sediments and provide a positive feedback mechanism to climate change that is sensitive to future changes in POCpetrooxidation.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    Climate change is decreasing watershed glacial coverage throughout Alaska, impacting the biogeochemistry of downstream ecosystems. We collected streamwater fortnightly over the glacial runoff period from three streams of varying watershed glacier coverage (0–49%) and a subglacial outflow to assess how glacier recession impacts the relative contributions of glacier and terrestrial plant derived dissolved organic matter (DOM) inputs to streams. We show an increase in the fraction of old dissolved organic carbon (up to ∼ 3200 yr old radiocarbon age) with increasing glacial meltwater contribution to streamflow. We use a dual isotopic mixing model (δ13C and Δ14C) to quantify the relative contribution of terrestrial and glacial sources to streamwater DOM. The endmember contributions were further compared to DOM molecular compositional data from Fourier‐transform ion cyclotron resonance mass spectrometry to assess whether DOM composition can be linked to streamwater DOM source in watersheds with varying contributions of glacial runoff. This approach revealed the glacial fraction was positively correlated with percent relative abundance of heteroatom‐containing DOM molecular formulae, aliphatics, and peptide‐like formulae, while the terrestrial fraction was positively correlated with condensed aromatics and polyphenolics. These results provide information about how the retreat of mountain glaciers will impact the composition and thus biogeochemical role of DOM delivered to downstream ecosystems. Our findings highlight that combining an isotopic mixing model and ultrahigh resolution mass spectrometry data can provide novel insights into how changes in watershed landcover impact the source and chemical properties of streamwater DOM.

     
    more » « less